
Journal of Sound and <ibration (2002) 254(4), 733}762
doi:10.1006/jsvi.2001.4119, available online at http://www.idealibrary.com on
LOW-OSCILLATION COMPLEX WAVELETS

P. S. ADDISON

Civil Engineering Group, School of the Built Environment, Napier ;niversity, Edinburgh, Scotland.
E-mail: p.addison@napier.ac.uk

J. N. WATSON

Cardiodigital ¸td, Edinburgh, Scotland

AND

T. FENG

Civil and Construction Engineering Department, ;MIS¹, Manchester, England

(Received 30 May 2001, and in ,nal form 1 November 2001)

In this paper we explore the use of two low-oscillation complex wavelets*Mexican hat
and Morlet*as powerful feature detection tools for data analysis. These wavelets, which
have been largely ignored to date in the scienti"c literature, allow for a decomposition which
is more &&temporal than spectral'' in wavelet space. This is shown to be useful for the
detection of small amplitude, short duration signal features which are masked by much
larger #uctuations. Wavelet transform-based methods employing these wavelets (based on
both wavelet ridges and modulus maxima) are developed and applied to sonic echo NDT
signals used for the analysis of structural elements. A newmobility scalogram and associated
re#ectogram is de"ned for analysis of impulse response characteristics of structural elements
and a novel signal compression technique is described in which the pertinent signal
information is contained within a few modulus maxima coe$cients. As an example of its
usefulness, the signal compression method is employed as a pre-processor for a neural
network classi"er. The authors believe that low oscillation complex wavelets have wide
applicability to other practical signal analysis problems. Their possible application to two
such problems is discussed brie#y*the interrogation of arrhythmic ECG signals and the
detection and characterization of coherent structures in turbulent #ow "elds.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The wavelet transform (WT) has been found particularly useful for analyzing signals which
can best be described as aperiodic, noisy, intermittent, transient and so on. Their ability to
localize in both time and frequency in a distinctly di!erent way from the traditional short
time Fourier transform (STFT) has spawned a number of sophisticated wavelet-based
methods for signal decomposition, manipulation and interrogation.

Analyzing wavelets fall into two general categories: continuous and discrete. The choice
of the most appropriate wavelet used in the analysis of engineering problems depends very
much on the nature of the data itself. Complex wavelets, such as theMorlet wavelet, are well
suited to the free vibrations of plates and beams (e.g., references [1}7]). The temporal
records of such vibrations quickly exhibit a high degree of complexity due to both the
multiple re#ections from the specimen edges and the superposition of multiple wavegroups
whose group velocity is frequency dependent. The Morlet wavelet is able to unfold these
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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signals in time and frequency allowing for the decoupling of vibration modes. Both discrete
(e.g., references [8}11]) and continuous (e.g., references [12}16]) (usually complex) wavelets
have been used to monitor rotating machinery such as gears, shafts and bearings. Discrete
wavelets are favoured when, for example, a small number of data are required as input to
a classi"er such as a neural network. Continuous wavelets are favoured when high temporal
resolution at all scales and/or phase information is required. Most engineering surface
characterization work has used discrete wavelets, whose coe$cients are used to provide
scale-dependent surface characteristics (e.g., references [17}22]). Often, the coe$cients are
used to verify the fractal scaling of a surface. Discrete wavelet transforms have also been
found particularly useful for signal compression problems in engineering (e.g., references
[23}25]). Similar patterns of usage of the various available wavelets can be found in other
subject areas including geophysics, #uid mechanics, medicine, "nance and so on [26].

This paper concentrates on a speci"c category of complex continuous wavelets*low-
oscillation complex wavelets*which until now have received little or no mention of their
practical application in the scienti"c or engineering literature. The archetypal continuous
complex wavelet used widely in practice is the standard Morlet wavelet. This is usually
speci"ed to have approximately "ve &&signi"cant'' sinusoidal oscillations within a Gaussian
window. The low-oscillation complex wavelets considered herein are much less oscillatory
in the sense that they contain fewer (even single) signi"cant oscillations within the window.
It is shown that these wavelets are extremely useful for the analysis of certain data sets
where the identi"cation of the temporal location of isolated features within a more
oscillatory or noisy background is important. This paper is part tutorial on the background
of complex low-oscillation wavelets, setting them in the context of continuous wavelet
theory, and part report on their application. The paper is structured as follows: In section 2,
two low-oscillation complex wavelets are introduced*the completeMorlet wavelet and the
complexMexican hat. This section also contains background wavelet transform theory and
outlines modulus maxima and ridge techniques for use in condensing the information
contained in continuous wavelet space. Section 3 introduces the test data used in this
study*sonic echo NDT time series*and illustrates the ability of low-oscillation complete
Morlet wavelets to localize better signal features associated with structural faults.
A mobility scalogram is introduced in section 4 together with modulus maxima (ModMax)
"ltering to remove both spurious oscillations and noise from the signal. Section 5 considers
as an example the use of the mobility scalogram modulus maxima as a suitable
pre-processing method for neural network classi"cation. The results of the analysis are
discussed in section 6 together with possible applications of these wavelets to other areas.

2. LOW-OSCILLATION COMPLEX WAVELETS

Wavelet transforms di!er from the STFT as they allow arbitrarily high localization in
time of high-frequency signal features. Wavelets do this by having a variable window width
which is related to the scale of observation, this #exibility allows for the isolation of the
high-frequency features. In e!ect, the Heisenberg boxes associated with the analyzing
wavelet function change shape in the time}frequency plane becoming tall and thin at high
frequencies and short and wide at lower frequencies, whereas the "xed window of the STFT
dictates Heisenberg boxes of constant dimensions across the time}frequency plane. Another
important distinction between wavelet and Fourier analysis is that wavelet analysis is not
limited to using sinusoidal analyzing functions, but rather can employ a large selection of
localized waveforms*as long as they satisfy the prede"ned mathematical criteria described
below. In this section, a brief review of the wavelet transform and its de"ning properties is
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presented, then two oscillation complex wavelets are described*the low-oscillation
complete Morlet wavelet and the complex Mexican hat wavelet.

2.1. BACKGROUND THEORY

The wavelet transform of a continuous time signal, x(t), is de"ned as

¹(a, b)"
1

�a �
��

��

x(t)�H�
t!b

a �dt (1)

where �*(t) is the complex conjugate of the wavelet function �(t), a is the dilation parameter
of the wavelet and b is the location parameter of the wavelet. In order to be classi"ed as
a wavelet, a function must satisfy certain mathematical criteria. These are:

(1) A wavelet must have "nite energy,

E"�
�

��

�� (t)��dt(R. (2)

(2) If �K ( f ) is the Fourier transform of �(t), i.e.,

�K (�)"�
�

��

� (t)e�i���� dt, (3)

then the following condition must hold:

C
�
"�

�

�

��K (�)��
�

d�(R. (4)

This implies that the wavelet has no zero-frequency component, i.e., �K (0)"0, or, to put
it another way, it must have a zero mean. Equation (4) is known as the admissibility
condition and C

�
is called the admissibility constant. The value of C

�
depends on the chosen

wavelet.
(3) For complex (or analytic) wavelets, the Fourier transform must both be real and

vanish for negative frequencies.

The contribution to the signal energy at the speci"c a scale and b location is given by the
two-dimensional wavelet energy density function known as the scalogram:

E(a, b)"�¹ (a, b) ��. (5)

The total energy in the signal may be found from its wavelet transform as follows:
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��

x(t)�dt�. (6)

The contribution to the total energy distribution contained within the signal at a speci"c
a scale is given by

E (a)"�
��

��

�¹(a, b) ��db. (7)

This is known as wavelet variance and is used to "nd dominant scales associated with the
signal. It has been used often, for example, in the study of coherent structures found in
turbulent #uid #ows [27}29]. A wavelet-based power spectral density function can be
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derived simply from equation (7), which can be compared directly to its Fourier
counterpart, i.e.,

P
�
(�)"

1

��
�
C

�
�

�

�

�¹ (�, b)��db, (8)

where C
�
is the admissibility constant, � is the total time of the signal (taken long enough to

ensure that the pertinent statistics have settled down su$ciently for analysis) and �
�
is

a representative frequency of the mother wavelet (de"ned for scale a"1 and location b"0)
such as the bandpass centre, peak frequency, central frequency, etc. Thus, the representative
frequency, �, corresponding to a wavelet of arbitrary scale a is given by �"�

�
/a.

Finally, as with the Fourier transform, the original signal may be reconstructed using an
inverse transform:
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dadb

a�
. (9)

In practice, a "ne discretiziation of the continuous wavelet transform is computed where
usually the b location is discretized at the sampling interval and the a scale is discretized
logarithmically. The a scale discretization is often taken as integer powers of 2, however,
when "ner resolution is required this is changed to fractional powers of two, known as
voices reference [30]. The discretized continuous wavelet transform (CWT) is made distinct
from the discrete wavelet transform (DWT) in the literature. In its basic form, the DWT
employs a dyadic grid (integer power of two scaling in a and b) and orthonormal wavelet
basis functions and exhibits zero redundancy. (Actually, the transform integral remains
continuous for the DWT but is determined only on a discretized grid of a scales and
b locations. And, in practice, the input signal is treated as an initial wavelet approximation
to the underlying continuous signal from which, using a multiresolution algorithm, the
wavelet transform and inverse transform can be computed discretely, quickly and without
loss of signal information.) Many variants of the DWT exist including, most notably, the
maximal overlap DWTwhich allows a "ner, more regular discretization of the signal which,
although destroying orthogonality, is useful for some statistical applications reference [31].
In this paper, however, we concern ourselves only with the continuous wavelet transform.

As the wavelet transform given by equation (1) is a convolution of the signal with
a wavelet function we can use the convolution theorem to express the integral as a product
in Fourier space, i.e.,

¹ (a, b)"
1

2� �
�

��

xL (�) �K H
���

(�) d�, (10a)

where

�K H
���

(�)"�a�K H (a�)ei�� (10b)

is the Fourier spectrum of the analyzing wavelet at scale a and location b. In this way, a fast
Fourier transform (FFT) algorithm can be employed in practice to compute the wavelet
transform.

A vast amount of information is contained within the continuous wavelet transform
¹(a,b). This can be condensed considerably by considering only local maxima and minima
of the transform. Two de"nitions of these maxima are commonly used in wavelet analysis
practice, these are:
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(1) Wavelet ridges, de"ned as

d( �¹(a, b)��/a)
da

"0, (11)

which are used for the determination of instantaneous frequencies and amplitudes of signal
components references [32}36]. Notice that this de"nition of a ridge uses the rescaled
scalogram �¹(a, b)��/a as it leads to a simpler analytical solution relating the ridge to the
instantaneous frequency when a standard Morlet wavelet is employed as the analyzing
wavelet (see section 2.3).

(2) Wavelet modulus maxima, de"ned as

d �¹(a, b) ��
db

"0 (12)

are used for locating and characterizing singularities in the signal. (Note that equation (12)
also includes in#ection points with zero gradient. These can be easily removed when
implementing the modulus maxima method in practice.) Examples of modulus
maxima-based methods in engineering, medicine and the characterization of multifractal
signals include those by Roux et al. [37], Sahambi et al. [38, 39], Li and Loehle [40],
Kadambe et al. [41], Bruce and Adhami [42], Carmona et al. [43], Haase and Lehle [44],
and Degaudenzi and Arizmedi [ 45].

2.2. THE MORLET WAVELET

The complete Morlet wavelet is de"ned as

� (t)"
1

���
(ei���!e���

�	�) e���	�, (13)

where �
�
is the central frequency of the mother wavelet. The second term in the brackets is

known as the correction term, as it corrects for non-zero mean of the complex sinusoid of
the "rst term. In practice, it becomes negligible for values of �

�
'5. Previous investigators

have concentrated on wavelet transforms with �
�
in the range 5}6, where it can be

performed without the correction term since it becomes very small. In this case, the Morlet
wavelet becomes

� (t)"
1

���
ei��� e���	�. (14)

This truncated Morlet wavelet is invariably used in the literature and often referred to as
simply theMorlet wavelet. In this paper we use the name, standard Morlet wavelet, for this
simpli"ed form and complete Morlet wavelet, for the complete form given by equation (13).

The standard Morlet wavelet is simply a complex sinusoid within a Gaussian envelope,
where the central frequency, �

�
, in e!ect determines the number of signi"cant oscillations of

the complex sinusoid within the Gaussian window. One can observe this from equation (14)
in conjunction with Figure 1(a) and 1(b) which plots the real and imaginary parts of the
wavelet for �

�
"2 and 5 respectively. The complex sinusoidal waveform is contained in the

term ei��� ("cos(�
�
t)#i sin(�

�
t)). The Gaussian envelope e� ��	� has unit standard

deviation and &&con"nes'' both the real and imaginary part of the complex sinusoidal
waveform. The imaginary part is phase shifted from the real part by a quarter period. The

1/ ��� term is a normalization factor which ensures that the wavelet has unit energy. (Note
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that various other normalizations are commonplace in the literature each of which require
a di!erent C

�
to be used to ensure that the original signal and transform contain the same

energy.) The completeMorlet wavelet is shown in Figure 2(a) and 2(b), again for �
�
"2 and

5. If one looks at the waveform carefully, it can be seen that the complex waveform of the
complete Morlet wavelet for �

�
"2 is not completely con"ned by the Gaussian envelope.

This is caused by the correction term, and is also the case for the �
�
"5 wavelet, but the

di!erence is negligible. For the standard Morlet wavelet, however, the complex sinusoidal
waveforms are completely con"ned by the Gaussian envelope although the wavelet has
a non-zero mean. However, again for the �

�
"5 wavelet this is negligible.

The Fourier transform of the standard Morlet wavelet is

�K (�)"�2 ��� e��������	� (15)

and hence its energy spectrum is

��K (�)��"2�� e��������. (16)

The energy spectra of the standard Morlet wavelet are shown in Figure 1(c) for both
�

�
"2 and 5. It is obvious from the visual inspection of the plot that the spectrum for

�
�
"2 contains a zero-frequency component (marked by an arrow). For �

�
"5, the mean

component becomes negligible and cannot be observed. The mean component causes
a singularity in the admissibility function ��K (�)��/� (cf. equation (4)) as shown in Figure 1(d)
(marked by the arrow).



-6 -4 -2 0 2 4 6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time

m
ag

ni
tu

de

real component
imaginary component
Gaussian envelope

-6 -4 -2 0 2 4 6
time

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

m
ag

ni
tu

de

real component
imaginary component
Gaussian envelope

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
ag

ni
tu

de

0 1 2 3 4 5 6 7 8
angular frequency, � (rad/s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
ag

ni
tu

de

0 1 2 3 4 5 6 7 8
angular frequency, � (rad/s)

�0 = 2 rad/s
�0 = 5 rad/s

�0 = 2 rad/s
�0 = 5 rad/s

(a) (b)

(c) (d)

Figure 2. The complete Morlet wavelet at: �
�
"2, (b) �

�
"5, (c) energy spectra �

�
"2 and 5, (d) admissibility

function �
�
"2 and 5.

COMPLEX WAVELETS 739
The Fourier transform of the complete Morlet wavelet is

�K (�)"�2 ��� e�������
��	� (e��� ! 1) (17)

and its energy spectrum is

��K (�)��"2�� e�������
� � (e���!1)�. (18)

Figure 2(c) contains the energy spectra for the complete Morlet wavelet transform for
both �

�
"2 and 5. There is no zero-frequency component due to the correction term in the

de"nition of the complete Morlet wavelet hence there is no singularity in the admissibility
spectrum (Figure 2(d)). More information on the determination of C

�
for both the standard

and complete Morlet wavelets is provided in Appendix A.

2.3. WAVELET RIDGE DEFINITION USING STANDARD AND COMPLETE MORLET WAVELET

TRANSFORMS

Consider the wavelet transform of a sinusoidal signal given by the complex exponential
function

x(t)"e�i�	�, (19)

where�
	
is the frequency of the sinusoidal waveform. Substituting this into equation (1), the

wavelet transform of the signal, x(t), can be shown to be

¹(a, b)"�a�(a�
	
)e�i�	�, (20)
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where �a� (a�
	
) is the Fourier transform of the wavelet at scale a. Substituting the Fourier

transform of the standard Morlet wavelet (equation (15)) into this equation gives

¹ (a, b)"�2 ����a e����	�����	� e�i�	�. (21)

If one de"nes the rescaled scalogram as

S(a)"�¹(a, b)��/a"2�� e����	�����, (22)

then di!erentiating with respect to a gives

dS

da
"2�� e����	����� [!2�

	
(a�

	
!�

�
)]. (23)

Setting dS/da"0 one can see that

a


�

	
!�

�
"0, (24)

where a


is the scale of the ridge maxima. Hence, the instantaneous frequency of the signal

can be found from maxima in the rescaled scalogram using the simple expression

�
	
"

�
�
a



. (25)

If the rescaled scalogram is de"ned in terms of frequency instead of scale, i.e., (�¹(�, b)��)/a
where the &&wavelet frequency'' � is related to the scale in terms of the central frequency of
the wavelet, i.e., �"�

�
/a, then we can see that the instantaneous frequency can be read

directly from the spectral location of the ridges in this rescaled scalogram.
Note that by using the standard scalogram, �¹(a, b)��, the instantaneous frequency can be

found from the more involved relationship

�
	
"

�
�
#���

�
#2

2a
�

. (26)

The determination of an instantaneous frequency from ridges in the rescaled scalogram is
described in more detail in reference [32] and for noisy signals by Carmona et al. [33, 34].
Ridges have been used by Staszewski [35, 36] in an engineering (dynamics) context within
a new procedure for non-linear system identi"cation. In these studies, only the transform
values restricted to the ridges, known as the skeleton, were used to reconstruct individually,
and hence decouple, the dominant modes of oscillation for use in subsequent damping
parameter estimation. The relationship between standard wavelet scalograms and Fourier
wavelengths are discussed in reference [46] which provides some brief mathematical detail
in Appendix A deriving, essentially, equation (26) in terms of Fourier wavelengths rather
than Fourier frequencies. See also Torrence and Compo [47] who provide the information
on how to "nd the Fourier wavelengths for the Morlet, Paul and all the derivatives of
Gaussian wavelets (i.e., including the Mexican hat).

Now, we derive a similar expression for ridges of the complete Morlet wavelet, for which
we have

¹(a, b)"�2 ����a e������
	���

� �	�(e��	��!1) e�i�	�, (27)

hence,

S(a)"�¹(a, b)��/a"2�� e������
	���

� � (e��	��!1)�. (28)
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Di!erentiating gives

dS

da
" ��� e������

	���
� � (e��	��!1)[�

�
!2a�

	
(e��	��!1)]. (29)

Setting dS/da"0 gives

a
�

"

1

�
�
�

	

log�1#

�
�

2a
�
�

	
�. (30)

Here we see that a more involved computation is required to determine the instantaneous
frequency �

	
than for the standard Morlet wavelet transform.

2.4. THE COMPLEX MEXICAN HAT WAVELET

The Mexican hat wavelet is the second derivative of a Gaussian function given by

�(t)"(1!t�)e���	�. (31)

This wavelet has been used, in practice, for a number of data analysis tasks in engineering
including the morphological characterization of engineering surfaces [48] and the
interrogation of laser-induced ultrasonic signals used to measure sti!ness coe$cients in
a viscoelastic composite material [49]. However, it has been found particularly useful in the
analysis of turbulent #ows [27, 28, 50}60]. In addition, the Mexican hat is used extensively
in studies requiring the use of modulus maxima methods as its maxima lines (and those of
other derivatives of Gaussian functions) are guaranteed to be continuous across scales for
singularities in the signal [61]. All these studies involve the real-valued Mexican hat
function in its one- or two-dimensional form. However, a complex version of the Mexican
hat function can easily be constructed by simply setting the negative part of its Fourier
frequency spectrum to zero before performing an inverse Fourier transform to obtain the
analytic version of the Mexican hat shown in Figure 3. This wavelet has a Gaussian
envelope and its transform modulus maxima do not include the side lobe contamination
associated with the real-only version.
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3. ANALYSIS OF SONIC ECHO PILE DATA

In current practice, the low-strain integrity testing of foundation piles involves the
interpretation of a Fourier "ltered temporal signal (Sonic Echo Method). This method is
widely used as no great pile preparation or excessively expensive equipment is necessary
[62]. The technique is an example of impact hammer testing where a pile head's response to
an instrumented hammer blow is measured. The resulting time trace is typically made up of
transient pulses re#ected from structural features of the pile or changes in its surrounding
environment. It is often analyzed in conjunction with the spectral response, mobility curve
(the transient dynamic response method). In this section, some examples of the wavelet
Figure 4. Morlet wavelet transform of sonic echo signal. Complete Morlet wavelet used with (�
�
"5): (a)

original signal (top) and wavelet transform modulus plot (bottom); (b) modulus maxima plot from scalogram (top)
and ridge plots from rescaled scalogram (bottom). (Un"lled contour plots used to aid clarity.)
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analysis of sonic echo traces are provided. The analysis is carried out using completeMorlet
wavelets on the sonic echo data which is zero padded to eliminate edge e!ects in the
transform space [63]. For the tests considered, the piles are intact and the depth of the pile
toe is of speci"c interest. The location of the toe is found by detecting, from within the signal,
the echo re#ection from the interface between the bottom of the pile and the surrounding
earth. The depth of the toe can then be calculated by knowing the speed of propagation of
the stress wave through the pile material.

Figures 4 and 5 contain a "nite element generated test signal from a 11 m pile in sti!/very
sti! clay for central frequencies�

�
"5 and 2 respectively. This signal contains three obvious

components: the initial pulse, followed immediately by decaying ringdown (lateral
Figure 5. Morlet wavelet transform of sonic echo signal. Complete Morlet wavelet used with (�
�
"2): (a)

original signal (top) and wavelet transform modulus plot (bottom); (b) modulus maxima plot from scalogram (top)
and ridge plots from rescaled scalogram (bottom). (Un"lled contour plots used to aid clarity.)
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oscillation of the pile head) and an obvious re#ection pulse at about 0)65 ms. The wavelet
transform modulus plots, shown below each signal, clearly isolate the re#ection pulse in
both time and frequency from both the initial pulse and the ringdown oscillations. (Note
that in the plot, (1) Hertz rather than radians are used; (2) a logarithmic scale is used for the
transform values; and (3) a cut-o! has been set to disregard the very low amplitude
#uctuations.) The modulus maxima and ridges corresponding to the wavelet transforms are
also shown in the "gures. Note that the rescaled scalogram �¹ (a, b)��/a is used for the
wavelet ridge plot. Very low amplitude #uctuations have been ignored in both plots. One
Figure 6. Morlet wavelet transform of sonic echo signal. Complete Morlet wavelet used with (�
�
"5): (a)

original signal; (b) wavelet transform modulus plot (logarithmic transform scale*white maxima and black
minima); (c) wavelet transform phase plot (phase cycles from !� (black) to � (white); and (d) plots of modulus
maxima (top) and ridges (bottom).
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thing that is noticed from the ridge and modulus maxima plots is that the higher central
frequency captures more accurately (compactly) the ridge associated with the ringdown,
whereas the lower central frequency captures better the temporal location of signal features
through the modulus maxima representation.

The signal shown in Figure 6(a) comes from a real 400 mm square pre-cast pile. The pile is
installed in 2 m of air, over 2)5 m of gravel, over clay and it is much less clear than the
Figure 7. Morlet wavelet transform of sonic echo signal. Complete Morlet wavelet used with (�
�
"2):

(a) original signal; (b) wavelet transform modulus plot (logarithmic transform scale*white maxima and black
minima); (c) Wavelet transform phase plot (phase cycles from !� (black) to � (white)); and (d) plots of modulus
maxima (top) and ridges (bottom).
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previous signal. It is not obvious from visual inspection where the toe re#ection is located
and, in addition, it cannot be detected using traditional Fourier transform techniques. In
this case, we know that the pile length is 12)5 m and hence a re#ection from the pile toe is
expected to be 7 ms (assuming a propagation velocity +3500 ms�
) after the initial
impulse. This trace is highly oscillatory in nature, with the pile head exhibiting excessive
ringdown which masks the re#ection information. The wavelet transform scalogram of the
pile signal generated using the completeMorlet wavelet with �

�
"5 is shown in Figure 6(b).

This takes the form of a decaying ridge at around the frequency of the ringdown oscillation.
This is approximately 9200 Hz. Although the transform has picked up the dominant
oscillation well, it contains no useful information regarding the pile toe re#ection. The phase
plot of the transform is shown in Figure 6(c). The phase plot also gives no indication of the
location of the pile toe. The modulus maxima corresponding to the scalogram are shown in
the top plot of Figure 6(d). Only two maxima lines cross the ridge, both at locations which
do not correspond to the re#ection. Numerous maxima lines can be seen at the top of the
diagram corresponding to high-frequency, low-amplitude noise in the signal, and a few, very
wavy maxima lines can be found at the lower frequencies due to erroneous #uctuations of
a very small amplitude. These very low amplitude maxima lines can easily be removed by
setting a cut-o! as was done in the previous "gures. The bottom plot of Figure 6(d) shows
the wavelet ridges plotted on the rescaled scalogram.

A similar set of results to Figure 6 is plotted in Figure 7 for the low-oscillation complete
Morlet wavelet with �

�
"2. In this case, an obvious feature is detected in the scalogram

(Figure 7(b)) at around 7 ms after the input pulse corresponds to the toe re#ection (marked
by the arrow in the plot). Although the phase plot shown in Figure 7(c) is much less
cluttered due to the less oscillatory nature of the wavelet, again very little can be gained
from the phase information. The modulus maxima plot of Figure 7(d) clearly shows
a number of maxima lines crossing the ringdown ridge, one passing directly through the
re#ection feature. Interestingly, the line tracing the dominant ridge is more oscillatory in
nature than for the �

�
"5 wavelet. Figure 8 plots a sequence of wavelet transforms for the

signal in Figures 6 and 7. This sequence corresponds to complete Morlet wavelets with
�

�
set to 5)5, 4)5, 3)5, 2)5 and 1)5, respectively, from top to bottom. The emergence of the

re#ection feature in the scalogram with reducing �
�
is obvious in the plot. In fact, the

temporal location of the pile toe is only made obvious by employing a low-oscillation
wavelet (�

�
"1)5 and 2)5), whereas the standard valued wavelet (�

�
"5)5) cannot detect the

feature due to the wavelet smearing the information over more oscillations and hence
a larger window width. Note that to produce the same internal analyzing frequency, a larger
window is required for the wavelet with larger �

�
*remember �

�
is a parametric constant.

This is due to the link between the central frequency and the resulting Heisenberg box
dimensions in wavelet space.

Figure 9(a) shows a schematic diagram of a standard valued Morlet wavelet at three
di!erent scales and their respective representations in the time}frequency plane, i.e., their
associated Heisenberg boxes. �� is the standard deviation of the energy spectrum around
the mean spectral components �



, �

�
and �

�
shown in the "gure and �

�
is the

corresponding deviations in the temporal energy spectra. Note that the short-term Fourier
transform has Heisenberg boxes which have the same dimensions in the time}frequency
plane and hence cannot resolve particularly high-frequency components in time nor
low-frequency components in frequency. Figure 9(a) shows the e!ect of changing a while
maintaining �

�
constant, and is well known in the literature. Figure 9(b), however, shows

the e!ect of changing �
�
of the mother wavelet. In the "gure, Heisenberg boxes in the

time}frequency plane for a mother wavelet with three di!erent central frequencies set to
a low, medium and high values are depicted. The con"ning Gaussian windows are all of the



Figure 8. Sequence of scalograms. CompleteMorlet wavelet used with, from top to bottom �
�
"5)5, 4)5, 3)5, 2)5

and 1)5.
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Figure 9. Heisenberg boxes for the complete Morlet wavelet: (a) Heisenberg boxes in the time-frequency plane
for a wavelet at various scales; (b) Heisenberg boxes in the time-frequency plane for a mother wavelet with three
di!erent central frequencies.
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same dimensions. Notice that altering the central frequency of the mother wavelet simply
shifts the associated &&mother'' Heisenberg box up and down the time}frequency plane
without altering the box dimensions. This mother Heisenberg box then de"nes the relative
shapes of all the others in the time}frequency plane associated with each wavelet, i.e., the
pattern shown in Figure 9(a) is simply shifted up or down the plane.

4. THE MOBILITY SCALOGRAM, MODULUS MAXIMA TEMPORAL FILTERING

The mobility, or mechanical admittance, is a technique commonly used in the analysis of
structural test signals. Speci"cally, it can be described as the frequency response function
(FRF) of the system with respect to velocity, that is,

H(�)"
<(�)

F(�)
, (32)

where <(�) is the spectrum of the velocity time trace and F(�) is the spectrum of the input
force. Often in modal analysis, the direct calculation of the mobility spectrum is
inappropriate due to the presence of noise. However, in pile analysis the spectrum above
1500 Hz is rarely considered and the coherence of the spectrum below this value is
su$ciently high for the direct calculation of the mobility spectrum. The inverse Fourier
transform of H(�) gives the impulse response function which is often referred to as the
re#ectogram in the literature. It is the basis for wave-tracing techniques because, as with its
frequency-domain equivalent, its shape is approximately input magnitude independent. An
example of a mobility curve and the corresponding re#ectogram is shown in Figure 10 for
an 11)5 m cast in situ pile with a Fourier cut-o! frequency of 1000 Hz employed. The cut-o!
frequency is necessarily low due to the spectral shape of the Gaussian-like input pulse (F(�)
in equation (32)). The magnitude of the spectral components above this frequency is often
very small causing large peaks in the mobility spectrum.

Now, we present a new concept in wavelet analysis*the mobility scalogram [64]. As
previously described, the notion of wavelet analysis can be summarized as the convolution
of an analytical function of multiple dilations with the signal under investigation. As such,
the calculation of the wavelet coe$cients for a given scale can be more e$ciently calculated
in the frequency domain where the wavelet function becomes, e!ectively, a band pass "lter.
Hence, for a given scale, or wavelet dilation, the coe$cients can be obtained from the
inverse Fourier transform of the product of the signal spectrum with the wavelet spectrum
at that dilation (equations 10(a) and (b)), thus,

¹(a, b)"
�a

2� �
��

��

<) (�)�K H(a�)ei��d�, (33)

where a is the wavelet dilation value, �K H(�) the wavelet function spectrum with the
superscript &&*'' representing the complex conjugate and<K (�) is the Fourier transform of the
velocity response. However, if one replaces the spectrum of the velocity signal <K (�) in the
above equation with that of the mobility curve HK H(�), the resulting scalogram then
becomes, e!ectively, the wavelet transform of the re#ectogram and hence becomes input
magnitude, and shape, independent. This scalogram has, therefore, been labelled the
mobility scalogram by the authors. The mobility scalogram is constructed using wavelets
which themselves have a broad range of spectral components, this e!ectively smoothes the
mobility curve*the smoothing function being dependant upon the wavelet used. By
employing a wavelet which is similar in shape to the features being sought (the complex
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Figure 10. The velocity trace for pile 1, top, its mobility curve beneath, and the reconstructed re#ectogram,
bottom. The mobility curve has been truncated at 1000 Hz, hence the smoother nature of the re#ectogram.
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Mexican hat has a Gaussian envelope) the e!ect is to include high-frequency components
only where there are associated low-frequency ones. Hence, using the mobility scalogram is
advantageous over the traditional mobility curve which can cause spurious singularities in
the high-frequency range and, therefore, spurious oscillations in the reconstructed
re#ectogram.

The top two plots of Figure 11 contain, respectively, a test signal plus a mobility
scalogram constructed as described above using a complex Mexican hat wavelet. Beneath



Figure 11. The stages of construction of the wavelet "ltered trace (bottom) from the original trace (top) through
utilizing the mobility scalogram and modulus maxima techniques.
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these is the modulus maxima plot of the scalogram and the wavelet "ltered trace. Using the
mobility scalogram, temporal denoising has been applied through the implementation of
the modulus maxima-basedmethod. Here, the energy in the scalogram is redistributed to its
maximal modulus turning points with respect to each scale [65]. By following these
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Figure 12. Superior "ltering obtained using the mobility scalogram. The initial un"ltered data for the
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contours from lower frequency scales up to the high-frequency scales one can di!erentiate
the high-frequency components caused by ringdown from those of the re#ected echoes and
input pulse, i.e., those components with associated lower frequency terms. The method is
superior to denoising methods previously proposed by the authors which were based on
simply setting a cut-o! threshold in the scalogram [66]. The use of this technique also
drastically reduces the number of non-zero terms in the presented scalogram. Consequently,
this method is useful for the encoding of trace information.

Figure 12 contains the wavelet-"ltered signals for three test piles reconstructed using this
modulus maxima-basedmethod and their Fourier-based re#ectogram equivalents. It can be
seen from the "gure that, while the amplitude of the trace features are of the order of those of
the corresponding Fourier-based re#ectograms, their shapes better represent those of the
original traces. This is due to the retention of salient high-frequency components while the
high-frequency noise has been eradicated. The more accurate representation of the original
signal has very obvious advantages, especially when, in practice, an attempt is made to draw
inferences from the amplitude and shape of pulse re#ections, as in the example of section 5,
below.
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5. NEURAL NETWORK CLASSIFICATION OF PRE-PROCESSED
STRUCTURAL TEST DATA

In the preceding sections we have argued for the employment, in certain cases, of
low-oscillation wavelets and introduced the concept of the mobility scalogram. For the
example given, the structural testing of installed foundation piles, the advantage in having
"ltered data that better represents the original trace in shape is clear. The amplitudes and
morphology of the returning pulses in the sonic echo trace are representative of the degree
and position of faults in the installed pile. To illustrate this point a multi-layered neural
network has been trained using conventional back-propagation techniques to compute
a pile's cross-sectional pro"le from its sonic echo trace. A comparison between the
similarities of the two sets of input patterns was made up of: (1) the conventional
Fourier-basedmobility curves and (2) the Fourier transforms of the wavelet-"ltered impulse
response traces (e.g., the FFTs of the centre and right-hand traces of Figure 12). The
network topology could then be identical for the two data sets, the input space of the same
size and the maximum frequency presented (band pass centre in the wavelet case) that was
the same for both. The learning parameters were, however, optimized for each network
individually through parametric studies.

The networks were trained using numerically generated, "nite element traces of piles of
similar design in similar soil conditions to those described above. The convergence curves of
the respective networks are shown in Figure 13 and the "nal network errors are presented in
Table 1. An improved performance of the network presented with the wavelet pre-processed
data can be noticed. The wavelet method has allowed for a better encapsulation of the
original trace information, thus improving the eventual network performance. Indeed,
although the networks were trained on numerically generated data when traces from
similar, real, installed piles are presented to the wavelet pre-processed network signi"cant
faults can be identi"ed*see, for examples, Figure 14.



TABLE 1

Comparison of wavelet and fourier test data pre-processing for neural network interpretation

Mean pattern error

Training set Test set

Wavelet mobility data 0)49$0)04 0)66$0)05
FFT mobility data 0)94$0)05 1)07$0)49

Figure 14. An illustration of the ability of the neural network trained on wavelet-"ltered data to deduce faults in
real installed piles even when trained on numerically generated data. On the right is the design pro"le of the
installed pile; on the left is the pro"le calculated by the network.
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6. DISCUSSION AND CONCLUSIONS

In this paper we have attempted to bring low-oscillation complex wavelets to the
attention of the applied scientist. As far as we are aware, these new (although &&forgotten'' or
&&ignored'' might be better adjectives) wavelets are not currently being used in practice,
although we believe that they have much to o!er. The early part of the paper is explanatory
in nature, taking time to cover the basic theory of these wavelets and plotting them in the
time and frequency domains. We have then illustrated their use in practice, highlighting
their advantages over decompositions using wavelets of a more oscillatory nature.

Morlet wavelets with low values of �
�
contain only a few signi"cant oscillations within

the Gaussian window.We have shown that this improves the location detection capabilities
of the wavelet transform (see especially Figure 8). The same is true of the complex Mexican
hat wavelet. The most commonly used complex wavelet in practice, the standard Morlet
wavelet with �

�
*5, is more oscillatory and allows for a better resolution of frequency

components. For the complete Morlet wavelet, the relationship between the central
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frequency of the wavelet and its spectral}temporal location characteristics can be explained
through the consideration of the shapes of the Heisenberg boxes in the wavelet domain
(Figures 9(a) and 9(b)). The ridge of the complete Morlet wavelet corresponding to the
instantaneous frequency of a signal has been de"ned in terms of its central frequency. In
addition, the computation of the admissibility constant C

�
for both the complete and

standard Morlet wavelets has been discussed (Appendix A).
The advantage of the wavelet transform over either a pure spectral or temporal

decomposition of the signal is that the pertinent signals features can be characterized in the
time}frequency plane. This allows them to be separated from other features occurring at
similar times or having a similar frequency make-up. The signal decomposition is more
&&temporal than spectral'' for low-oscillation complex wavelets. The best wavelet to chose
(e.g., the most appropriate central frequency if using a complete Morlet) depends very much
upon the precise spectral}temporal characteristics of the features sought. Note, however,
that at very low values of central frequency the real part of the complete Morlet wavelet,
which includes the correction term, behaves as a Mexican hat wavelet and the complex part
begins to dominate. This is shown in Appendix B.

A new analysis tool, the mobility scalogram has been described, where the corresponding
re#ectogram, generated using only the modulus maxima, has shown itself to be better than
Fourier methods at retaining the high-frequency components associated with signal
features. The retention of this high-frequency information leads to a reconstruction which
better represents the shape of the pertinent signal features. In addition, the method requires
very few components from the modulus maxima to be used in the reconstruction thus
providing a useful data analysis tool, for example, in the pre-processing of signals prior to
the input in a classi"er. Actually, this method is recommended over discrete wavelet
methods which are translation invariant and hence can often fail to capture the signal
features succinctly.

Although this paper has used low-oscillation complex wavelets to examine sonic echo
velocity traces from piled foundations, it is envisaged that they will be useful in the
interrogation of a wide variety of other signals. Two examples of particular interest to the
authors are mentioned brie#y. It is "rst suggested that the temporal location characteristics
of the low-oscillation Morlet wavelet will prove useful in the examination of a variety of
medical signals, a particular case in point is the arrhythmic ECG signal which contains both
high-frequency spiking and lower frequency modulations mixed with external interferences
such as mains noise and muscle artefact [67, 68]. The preliminary research work, by two of
the authors (PSA, JNW), found the evidence for this to be true for a particular category of
common arrhythmia. It is also suggested that the complex Mexican hat and/or the
low-oscillation Morlet wavelet could prove particularly useful in the analysis of turbulent
#ows. Using these wavelets would both remove the side-lobe contamination associated with
the real-valued Mexican hat as well as provide phase information in the studies of coherent
#ow structures. (In fact, the authors "nd it rather surprising that, as far as they are aware,
the complex Mexican hat has not yet been used in such studies.) This wavelet should be
particularly good at the location (temporal in 1-D signals and spatial in 2-D "elds) of
coherent #ow structures. The spectral decomposition of #ow "elds has a long history in
#uid dynamics. However, the decomposition of velocity or vorticity "elds using a 2-D
low-oscillation complex wavelet would generate a complex decomposition which is more
&&temporal than spectral''. Thus, it is suggested that, this would be better to identify and
provide phase information on isolated #ow features of short duration and/or limited spatial
extent containing a broad band of frequency components.

The main conclusion from the work is that both the complete Morlet wavelet with the
tuneable central frequency, �

�
, extending down to very low values and the complex
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Mexican hat wavelet provide better de"ned phase information and enhanced temporal
isolation of signal components. These low-oscillation complex wavelets o!er a powerful
feature detection tool for a variety of data analysis tasks. As far as the authors are aware,
these wavelets appear to have been overlooked in the literature and it is suggested that the
analysis of many data sets would bene"t from a re-examination using continuous
low-oscillation wavelets.

ACKNOWLEDGMENTS

This research work was partly funded by EPSRC grant GR/M21881. The authors would
like to acknowledge Mike Kightley and Richard Nicholson of TESTAL Ltd and Stephen
Kemp of TECHNOTRADE Ltd for their useful input to the NDT data analysis work. In
addition, TESTCONSULT Ltd, is thanked for kindly providing additional EPSRC test
data.

REFERENCES

1. T. OG NSAY and A. G. HADDOW 1994 Journal of the Acoustical Society of America 95, 1441}1449.
Wavelet transform analysis of transient wave propagation in a dispersive medium.

2. K. KISHIMOTO, H. INOUE, M. HAMADA and T. SHIBUYA 1995 ¹ransactions of the American
Society of Mechanical Engineers, Journal of Applied Mechanics 62, 841}846. Time frequency
analysis of dispersive waves by means of wavelet transform.

3. H. INOUE, K. KISHIMOTO and T. SHIBUYA 1996 Experimental Mechanics 36, 212}217.
Experimental wavelet analysis of #exural waves in beams.

4. L. GAUL and S. HURLEBAUS 1997 Mechanical Systems and Signal Processing 12, 783}795.
Identi"cation of the impact location on a plate using wavelets.

5. H. JEONG and Y.-S. JANG 2000 Composite Structures 49, 443}450. Wavelet analysis of plate wave
propagation in composite laminates.

6. D. E. NEWLAND 1999 ¹ransactions of the American Society of Mechanical Engineers, Journal of
<ibrations and Acoustics 121, 149}155. Ridge and phase identi"cation in the frequency analysis of
transient signals by harmonic wavelets.

7. D. E. NEWLAND 1999 Philosophical ¹ransactions of the Royal Society 357, 2607}2625. Harmonic
wavelets in vibrations and acoustics.

8. B. A. PAYA, I. I. ESAT and M. N. M. BADI 1997 Mechanical Systems and Signal Processing 11,
751}765. Arti"cial neural network based fault diagnostics of rotating machinery using wavelet
transforms as a preprocessor.

9. N. ARETAKIS and K. MATHIOUDAKIS 1997 ¹ransactions of the American Society of Mechanical
Engineers, Journal of Engineering for Gas ¹urbines and Power 119, 870}876. Wavelet analysis for
gas turbine fault diagnostics.

10. J. PIN� EYRO, A. KLEMPNOW and V. LESCANO 2000 Journal of Alloys and Compounds 310,
276}279. E!ectiveness of new spectral tools in the anomaly detection of roller element
bearings.

11. K. SHIBATA, A. TAKAHASHI and T. SHIRAI 2000 Mechanical Systems and Signal Processing 14,
229}241. Fault diagnosis of rotating machinery through visualisation of sound signals.

12. W. J. STASZEWSKI and G. R. TOMLINSON 1994 Mechanical Systems and Signal Processing 8,
289}307. Application of the wavelet transform to fault detection in a spur gear.

13. A. YOSHIDA, Y. OHUE and H. ISHIKAWA 2000 ¹ribology International 33, 273}279. Diagnosis of
tooth surface failure by wavelet transform of dynamic characteristics.

14. W. J. WANGand P. D. MCFADDEN1996 Journal of Sound and<ibration 192, 927}939. Application
wavelets gearbox vibration signals for fault detection.

15. D. BOULAHBAL, M. FARID GOLNARAGHI and F. ISMAIL 1999 Mechanical Systems and Signal
Processing 13, 423}436. Amplitude and phase wavelet maps for the detection of cracks in geared
systems.

16. J. LIN and L. QU 2000 Journal of Sound and <ibration 243, 135}148. Feature extraction based on
Morlet wavelet and its application for mechanical fault diagnosis.



COMPLEX WAVELETS 757
17. X. Q. JIANG, L. BLUNT and K. J. STOUT 1999 Proceedings of the Institution of Mechanical
Engineers, Part H, Journal of Engineering in Medicine 213, 49}68. Three-dimensional surface
characterisation for orthopaedic joint protheses.

18. X. Q. JIANG, L. BLUNT and K. J. STOUT 2000 Proceedings of the Royal Society of ¸ondon A 456,
2283}2313. A lifting wavelet representation for surface characterization.

19. I. SIMONSEN, A. HANSEN and O.M. NES 1998 Physical Review E 58, 2779}2787. Determination of
the hurst exponent by use of wavelet transforms.

20. G. N. FRANTZISKONIS, L. B. SIMON, J. WOO and T. E. MATIKAS 2000 European Journal of
Mechanics A/Solids 19, 309}318. Multiscale characterisation of pitting corrosion and application
to an aluminium alloy.

21. R. S. SRINIVASAN and K. L. WOOD 1997 ¹ransactions of the American Society of Mechanical
Engineers, Journal of Mechanical Design 119, 185}193. A form tolerancing theory using fractals
and wavelets.

22. I. Y. TUMER, R. S. SRINIVASAN and K. L. WOOD 1995 Journal of Manufacturing Systems 14,
378}392. Investigation of characteristic measures for the analysis and synthesis of
precision-machined surfaces.

23. W. J. STASZEWSKI 1998 Journal of Sound and <ibration 211, 735}760. Wavelet based compression
and feature selection for vibration analysis.

24. M. TANAKA, M. SAKAWA and K. KATO 1997 Cybernetics and Systems 28, 225}244. Application of
wavelet transform to compression of mechanical vibration data.

25. M. J. DESFORGES, P. F. JACOBand J. E. COOPER1998 Proceedings of the Institution of Mechanical
Engineers, Part C, Journal of Mechanical Engineering Science 212, 687}703. Applications of
probability density estimation to the detection of abnormal conditions in engineering.

26. P. S. ADDISON2002 ¹he Illustrated=avelet¹ransformHandbook. Bristol: The Institute of Physics
Publishing.

27. W. CHEN, M. D. NOVAK, T. A. BLACK and X. LEE 1997 Boundary-¸ayer Meteorology 84, 99}123.
Coherent eddies and temperature structure functions for three contrasting surfaces.
Part 1: ramp model with "nite microfront time.

28. W. GAO and B. L. LI 1993 Journal of Applied Meteorology 32, 1717}1725. Wavelet analysis of
coherent structures at the atmosphere-forest interface.

29. C.-H. LU and D. R. FITZJARRALD 1994 Boundary-¸ayer Meteorology 69, 43}69. Seasonal and
diurnal variations of coherent structures over a deciduous forest.

30. I. DAUBECHIES 1992 Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in
Applied Mathematics. Philadelphia: SIAM.

31. R. R. COIFMAN and D. L. DONOHO 1995 ¸ecture Notes in Statistics 103, 125}150. Translation
invariant de-noising.

32. N. DELPRAT, B. ESCUDIE, P. GUILLEMAIN, R. KROMLAND-MARTINET, P. TCHAMITCHAIN and
B. TORRESANI 1992 IEEE ¹ransactions on Information ¹heory 38, 644}664. Asymptotic wavelet
and Gabor analysis: extraction of instantaneous frequencies.

33. R. A. CARMONA, W. L. HWANG and B. TORRESANI 1997 IEEE ¹ransactions on Signal
Processing 45, 2586}2590. Characterization of signals by the ridges of their wavelet
transform.

34. R. A. CARMONA, W. L. HWANG and B. TORRESANI 1999 IEEE ¹ransactions on Signal Processing
47, 480}492. Multiridge detection and time}frequency reconstruction.

35. W. J. STASZEWSKI 1997 Journal of Sound and <ibration 203, 283}305. Identi"cation of damping in
MDOF systems using time-scale decomposition.

36. W. J. STASZEWSKI 1998 Journal of Sound and <ibration 214, 639}658. Identi"cation of non-linear
systems using multi-scale ridges and skeletons of the wavelet transform.

37. S. ROUX, J. F. MUZY and A. ARNEODO 1999 ¹he European Physical Journal B 8, 301}322.
Detecting vorticity "laments using wavelet analysis: about the statistical contribution of vorticity
"laments to intermittency in swirling turbulent #ows.

38. J. S. SAHAMBI, S. M. TANDONand R. K. P. BHATT1997 IEEE Engineering inMedicine and Biology
16, 77}83. Using wavelet transforms for ECG characterization: an on-line digital signal
processing system.

39. J. S. SAHAMBI, S. M. TANDON and R. K. P. BHATT 1997Medical and Biological Engineering and
Computing 35, 747}751. Quantitative analysis of errors due to power-line interference and
base-line drift in detection of onsets and o!sets in ECG using wavelets.

40. B.-L. LI and C. LOEHLE 1995 Geophysical Research ¸etters 22, 3123}3126. Wavelet analysis of
mulitscale permeabilities in the subsurface.



758 P. S. ADDISON E¹ A¸.
41. S. KADAMBE, R. MURRAY and G. F. BOUDREAUX-BARTELS 1999 IEEE ¹ransactions on
Biomedical Engineering 46, 838}848. Wavelet transform-based QRS complex detector.

42. L. M. BRUCE and R. R. ADHAMI 1999 IEEE ¹ransactions on Medical Imaging 18, 1170}1177.
Classifying mammographic mass shapes using the wavelet transform modulus-maxima method.

43. R. A. CARMONA, W. L. HWANG and R. D. FROSTIG 1995 IEEE ¹ransactions on Medical Imaging
14, 556}564. Wavelet analysis for brain-function imaging.

44. M. HAASE and B. LEHLE 1998 in Fractals and Beyond (M. M. Novak, editor). Singapore: World
Scienti"c. Tracing the skeleton of wavelet transform maxima lines for the characterization of
fractal distributions,

45. M. E. DEGAUDENZI and C. M. ARIZMEDI 1999 Physical Review E, 59, 6569}6573. Wavelet-based
fractal analysis of airborne pollen.

46. S. D. MEYERS, B. G. KELLY and J. J. OBRIEN 1993Monthly=eather Review 121, 2858}2866. An
introduction to wavelet analysis in oceanography and meteorology: with application to the
dispersion of Yanai waves.

47. C. TORRENCE and G. P. COMPO 1998 Bulletin of the American Meteorological Society 79, 61}78.
A practical guide to wavelet analysis.

48. S.-H. LEE, H. ZAHOUANI, R. CATERINI and T. G. MATHIA 1998 International Journal for Machine
¹ools Manufacture 38, 581}589.Morphological characterisation of engineered surfaces by wavelet
transform.

49. S. GUILBAUD and B. AUDOIN 1999 Journal of the Accoustical Society of America 105, 2226}2235.
Measurement of the sti!ness coe$cients of a viscoelastic composite material with laser generated
and detected ultrasound.

50. H. LI and T. NOZAKI 1995 JSME International Journal, Series B 38, 525}531. Wavelet analysis for
the plane turbulent jet.

51. P. S. ADDISON 1999 Proceedings of I Mech E, Part C, Journal of Mechanical Engineering Science
213, 217}229. Wavelet analysis of the breakdown of a pulsed vortex #ow.

52. P. S. ADDISON, K. B. MURRAY and J. N. WATSON 2001 American Society of Civil Engineers,
Journal of Engineering Mechanics 127, 58}70. Wavelet transform analysis of open channel wake
#ows.

53. H. HIGUCHI, J. LEWALLE and P. CRANE 1994 Physics of Fluids 6, 297}305. On the structure of
a two-dimensional wake behind a pair of #at plates.

54. G. IUSO, M. ONORATO and M. ONORATO (Jr.) 1996 Advances in¹urbulence VI, Proceedings of the
Sixth European ¹urbulence Conference, ¸ausanne, Switzerland, 2}5 July 1996 (S. Gavrilakis, L.
Machiels and P. A. Monkewitz, editors), 519}520. Dodrecht: Kluwer Academic Publishers.
Spectral analysis of near wall turbulent #ow.

55. S. V. KAILAS and R. NARASHIMA 1999 Experiments in Fluids 27, 167}174. The eduction of
structures from #ow imagery using wavelets. Part 1. The mixing layer.

56. S. COLLINEAU and Y. BRUNET 1993 Boundary ¸ayer Meteorology 65, 357}379. Detection of
turbulent coherent motions in a forest canopy. Part 1: wavelet analysis.

57. S. COLLINEAU, Y. BRUNET 1993 Boundary ¸ayer Meteorology 66, 49}73. Detection of turbulent
coherent motions in a forest canopy. Part 2: time-scales and conditional averages.

58. C. R. HAGELBERG, D. I. COOPER, C. L. WINTERandW. E. EICHINGER1998 Journal of Geophysical
Research 103, 16 897}16 907. Scale Properties of microscale convection in the marine surface
layer.

59. N. TAKEUCHI, K. I. NARITA and Y. GOTO1994 Journal of Geophysical Research 99, 10 751}10 757.
Wavelet analysis of meteorological variables under winter thunderclouds over the Japan Sea.

60. P. SULLIVAN, R. ANCIMER and J. WALLACE 1999 Experiments in Fluids 27, 92}101. Turbulence
averaging within spark ignition engines.

61. S. MALLAT 1998 A =avelet ¹our of Signal Processing. San Diego: Academic Press.
62. M. J. TURNER1996CIRIA Report R144. London: Thomas Telford Press. The role of integrity and

other non-destructive testing in the evaluation of piled foundations.
63. P. S. ADDISON, J. N. WATSON and A. SIBBALD 1999 13th ASCE Engineering Mechanics Division

Conference, Baltimore,MD, ;.S.A., June 13}16. The practicalities of using wavelet transforms in
the non-destructive testing of piles on CD.

64. J. N. WATSON 2001 Ph.D. ¹hesis, Napier ;niversity, Edinburgh. The Application of Neural
Networks to Non-Destructive Testing Techniques.

65. J. LU, J. B. WEAVER, D. M. HEALY and Y. XU 1992 Proceedings of the IEEE-SP International
Symposium on ¹ime}Frequency and ¹ime-Scale Analysis, <ictoria, BC, October, 1992. Noise
reduction with multiscale edge representation and perceptual criteria.



COMPLEX WAVELETS 759
66. J. N. WATSON, P. S. ADDISON and A. SIBBALD 1999 Journal of Shock and <ibration 6, 267}272.
The de-noising of sonic echo test data through wavelet transform reconstruction.

67. J. N. WATSON, P. S. ADDISON, G. R. CLEGG, M. HOLZER, F. STERZ and C. E. ROBERTSON 2000
Resuscitation 43, 121}127. Evaluation of arrythmic ECG signals using a novel wavelet transform
method.

68. P. S. ADDISON, J. N. WATSON, G. R. CLEGG, M. HOLZER, F. STERZ and C. E. ROBERTSON 2000
IEEE Engineering in Medicine and Biology 19, 383}392. A novel wavelet based analysis reveals
hidden structure in ventricular "brillation.

APPENDIX A

Let F(�)"��(�)��/�, C
�
of the mother complete Morlet wavelet is then

C
�
"�

�

�

F(�) d�"�
�

�

2�� e�������
� � (e���!1)�

�
d�. (A1)

The integral function F(�) for all the values of �
�
has a "nite area between �"0 and R,

which can be examined mathematically as follows.
As � approaches zero, the integral function F(�) becomes (0/0). By applying L'Hospital's

Principle, the limit of the function will be zero as shown in the following deduction:

lim
���

2�� e�������
� � (e���!1)�

�
" lim

���

4��
(e���!1)(�#�

�
!� e���)

e������
��

"0. (A2)

This means the numerator is a higher ordered in"nity of the denominator. Similarly, by
applying the same principle, one can "nd that the limit of the function F(�) is also zero,
while � approaches in"nity:

lim
���

2�� e�������
� � (e���!1)�

�
"0. (A3)

By di!erentiating F(�), we have the following expression:

dF(�)

d�
"2��

1

��
e�������

� � (e���!1)[2�
�
�!(e���!1)(2��#1)]. (A4)

Letting the right side equal to zero, two roots of the equation can be found as �


"0,

�
�
"R and the third root �

�
is the root of the transcendent equation given by

�
�
�"log�

2�
�
�

2��#1
#1�. (A5)

Hence, the function F(�) reaches its maximum once at �"�
�
somewhere in the region

between �"0 and �"R. This guarantees that C
�
will have a single "nite value for

a completeMorlet mother wavelet and will be a single valued function of �
�
. It is di$cult to

"nd the analytical form of the integral of equation (A1). Instead, the values of C
�
together

with the passband centre of the wavelet transform, �
�
, can be computed using numerical

integration, for example, for �
�

"1, 2, 3, 4 and 5, C
�
"2)036, 3)152, 2)228, 1)625 and 1)284,

and �
�
"1)555, 2)182, 3)085, 4)062 and 5)050 respectively. It is interesting that C

�
has its

maximum around �
�
"2.

The energy spectrum of the standard Morlet mother wavelet is given as follows:

��(�)��"2�� e��������. (A6)
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The admissibility constant, C
�
, of the wavelet is given by the following integral:

C
�
"�

�

�

F(�) d�"�
�

�

2�� e��������

�
d�. (A7)

As stated above, previous investigators used the central frequency, �
�
"5}6. The reason

is obvious because, if �
�
(5, the energy spectrum of standard wavelet will be truncated

by the vertical axis (�"0) and the de"nition of C
�
is violated. This can be seen quite clearly

in Figure 1(c) and 1(d), as the singularity of the function F(�) near �"0 makes the
integration inadequate while a converged C

�
cannot be found. According to the nature

of the function, F(0) would never be zero. However, if �
�
is su$ciently large, while

� approaches zero, it is still possible to maintain the ratio of the numerator and
denominator part of F(�) as unity. The trend can be examined mathematically by looking
at the limit given below:

lim
���� ����

2�� e��������

�
" lim

���� ����

2��
e����

� e������
��
. (A8)

The double limit above implies that while � approaches zero, �
�
moves towards in"nity in

the opposite direction. When �"��
�
(0(��1)

e�����
��

�
e����
���

�
"1. (A9)

Taking logarithm on both sides one obtains

(��#1)��
�
!2�

�
��#log ��

�
"0. (A10)

This is a transcendent equation which can only be solved numerically. However, for
0(��1, � can be estimated by

�"

e���
�

�
�

. (A11)

For �
�
"5, � and � are as small as 0)2e���("2)7776�10�
�) and e��� ("1)388�10�

),

respectively, which means the "rst discrete point will be extremely closer to zero. Hence, the
use of �

�
*5 will avoid the singularity of function F(�) and a single-valued C

�
can be

determined.

APPENDIX B

In this appendix we show that, for low values of central frequency, the real part of the
complete Morlet wavelet takes the approximate form of the Mexican hat function. The
complete Morlet is given as

�(t)"
1

���
(ei���!e���

�	�) e���	�, (B1)

which can be written as

�(t)"
1

���
(cos �

�
t#i sin �

�
t!e���

�	�) e���	�, (B2)
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the real part of which is

Re	�(t)
"

1

���
(cos �

�
t!e���

�	�) e���	�. (B3)

We can expand the exponentional function as

e
"1#z#
z�

2
#
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6
#2 (B4)

and the cosine function as

cos z"
�
�
�
�
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2
#
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24
!2. (B5)

Incorporating these expansions into equation (B3), and expanding only the second order
�

�
terms, one arrives at

Re	�(t)
"
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(�
�
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2
!�1#�!

��
�
2 ��� e���	�, (B6)

which reduces to

Re	�(t)
"

1

���

��
�
2

(1!t�) e���	�, (B7)

which has the same form as the Mexican hat function of equation (31) weighted by

(1/ ���) ��
�
/2. Figure B1 illustrates the Mexican hat-like shape of the complete Morlet

wavelet at low central frequencies. In the "gure, the Mexican hat wavelet of equation (31) is
plotted against the real part of the complete Morlet wavelet, normalized by dividing it by
Figure B.1. The behaviour of the real part of the Morlet wavelet at small values of central frequency compared
to the Mexican hat wavelet: (a) �

�
"3, (b) �

�
"2, (c) �

�
"1, �

�
"0)5, (e) �

�
"0)11.
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(1/ ���) ��
�
/2. The adoption of the Mexican hat shape of the Morlet wavelet becomes

obvious at low central frequencies. However, the complex part of the complete Morlet
wavelet has no such correction term and hence dominates at very low values of �

�
. Current

research by the authors therefore centres around the derivation of a Morlet-like wavelet
without such limitations.
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